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Abstract: In arandomized or observational study, it is very important to control time-dependent covariates which
can be confounders as well as intermediate varisbles, using appropriate statistical methods. The standard approaches may
be biased when a covariate is influenced by treatment history and is also 2 determinant of subsequent outcome and
treatment history. In this paper, we consider the problem of interval censoring in an observational study setup and discuss
methods of controlling such covarigtes, in order to estimate the causal effect of a time-dependent treatment or an exposure
on survival. In the presence of such covariates, the method of G-estimation allows for the appropriate adjustment and this
method uses a new class of Structural Nested Failure Time (SNFT) models. This is based on the netion of counterfactual
failure times estimated from interval censored data which can be reformulated as an incomplete or missing failure time
data. The maximum likelihood estimates of the survival times are equivalent to solving Turnbull's self-consistency

equations,
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1. INTRODUCTION

The standard strategy for estimating the effect of a time-
varying freatment on an outcome is to model the
probability of the outcome at time t as a function of past
treatment history. This approach may be biased, when the
time-dependent covariates are often both confounders and
intermediate variables. This is true if one adjusts for the
past history of time-dependent confounding covariates.
Robin {1986)] first proposed a novel approach for using
observational data to estimate the causal effect of g time-
varying treatment. This method, called G-estimation, uses
a new class of structural nested failure time (SNFTM)
models based on the notion of counterfactual failue
times, For more details the reader is referred to Robin
11986, 1989 and 1592},

Interval censored data can be reformulated as an
incomplete or missing failure time data and there are
several approaches avadable in literature to estimate the
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missing data and the maximurn likelihood estimates of the
survival times are equivalent to solving Turnbull’s self-
consisiency equations. Application of this methodology
will be useful in analyzing follow-up data where the event
of interest had occurred in an mnterval. In the context of
causal inference, estimating the effect of ireatmentis 1n the
presence of confounding and intermediate variables had
been a well discussed issue and the usual analysis
methods te estimate these effeots would produce biased
results,

Robin {19867 promoted a model for causal inference
based on potential outcomes i individuals receive
different ireatments under study. Commonly, the
assumption is made that the ouicome in one individual is
independent of the treatment assignment and outcome i
other individuals, The implication in much of the
literature 15 that only properly randomized experiments
can lead to useful estimates of causal effects, If taken as
applying o all fields of research, this position is
untenable. Even if the position that causal effects of



treatments can only be well established from randomized
experiments is applied 1o the social sciences, in which
there are only currently a few well-established causal
relationships, its implication lo ignore existing
observational dats may be counter- productive. Often the
onlv immediately available data are observational
{nonrandomized) and either the cost of performing the
eguivalent randomized experiment to test all reatiments
is prohibitive ar there are {other) etiucal reasons for
which the treatment cannot be randomly assigned.

(3-pstimation 1s  designed to estimate effects of
generalized (reatments (1.e. time-dependent exposures
that may influence and be influenced by other time-
dependent variables). Hs practicality and robustness arise
from the fact that it makes no assumption about the causal
relations among the covariates. The only causal
dependence that it models 1s of the exposure effect on the
outcome. Along with that causal model, it employs
another model for the regression of the study of exposure
at each point in time on the exposure, covartale, and
disease history of each subject up to that point in time.

2. STATISTICAL METHODS FOR ANALYSIS
OF INTERVAL-CENSORED SURVIVAL
DATA

Survival data render standard methods mappropriate
because survival times are frequently censored. The
survival time of an individual is censored when the end
point of interest has not been observed for that individual.
This may be because the dala from a study are to be
analyzed af & point in time when some individuals are still
alive. Alternatively, the survival status of an individual
may have been lost to follow-up. In some siluations,
however, the times of the events of interest may only be
known to have cccurred within zn interval of time,
[ L., R}, where L, <T<R; This can occur in a clinical
trial (for example, when patienis are assessed only at
prescheduled visits). If the event has not ocourred at one
visit {time L) but has occurred by the following visit (lime
R}, T is known only o be within the interval/r. p /.
These are called interval censored data. Note that exactly
observed, right and left censored data are special cases of
mterval censored data, with L = R for exactly observed
data and R = oo for night censored and L = 0 for left
censored observations.

Peto {1973] proposed a method fo estimate survival
curves from interval censored data which is analogeus to
the estimate desirable from right censored data by the life
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table techniques. Turnbull [1976] generalized the
Kaplan-Meier estimator for analysis of interval-censored
survivai data. Using the idea of self-consistency, Tumbull
constructed a simple algorithm. The algorithm converges
monotonically to vield & maximum likelthood estimate
(MLE) of a distribution function. Dempster er al. [1577]
proposed a very elegant and comprehensive theory of
maximuam likelihood with ncomplete data and developed
the expectation-maximization (EM) algorthm and 1ty
properties. The method proposed by Turnbull {1976] can
be viewed as an example of an EM algorithm. If we
consider heavy interval censoring of the data, it can be
viewed as missing data and the methed of EM algorithm
can be employed to estimate the survival time. The
method of EM maps the maximum hkelihood equation of
the parameter estimates from the observed data likelihood
to the maximum likelhood estimation based on a
complete-data tog likelihood function. An EM algorithm
can be both conceptually and computationally simple,
especially when the log-likelihood of the data under no
censoring has a simpler functional form than the log-
likelihood of the actual observed data.

Finkelstein and Wolfe [1986] proposed a semi-
parametric model for interval censored data where the
distribution of survival time, T, is nonparametnc but the
density of the vector of covariates X, given T, follows a
specified parametric  model.  Fumkelstein  {1986]
generalized Cox's tegression model for analysis of
interval censored survival data.  Also, methods for
estimating a distribution function from intervai-censored
data have also been studied by other authors including
Turnbuli [1976] and Groeneboom [1991], Examples of
methods that relate to interval-censored data in models
include Shiboski and Necholas 11992], Jane and Louise
11998], Rebecea e af. [1999] and Finklestein [1986].
Flygare et al. {19857 and Odell 7 2/.]1992] emploved
parametric models with interval censoring. Flygare et
al 11985] presented MLE techniques for estimating the
two-parameter  Weibull distribution  from  interval-
censored data.  The parameter MLEs were compared
with the estimates obtamed from mudpoints of intervals.

Odell er af. {1992] studied the use of a Weibull based
accelerated feilure time regression model for left and
interval censored data.  Estimates from two methods,
maxynum lkelihood method and midpoint interval
method, were discussed.  Thelr simulation studies
indicate that for relatively large samples there are many
instanoes when the MLEs are superior o the estimates
obtained from the midpoints of intervals.

Seif and Grossman [ 19861 proposed linear rank statistics



for testing the differences between groups when the data
are interval censored. The lest statistics are closely
refated to those proposed by Prentice [1978] for right
censored data. Buckner and Messerer {1988] contrasted
the Tumbull estimator with the conventionally used
Kaplan-Meier estimator. In addition, these authors also
used a parametric model for estimation or simulation of
the delay times of complete remission diagnosis and
relapse diagnosis.  They discussed two possible
consequences of the conventional approach: biased
estimation and underestimation of the frue error variance,
which may lead to false positive results. Becker and
Melbye [1991] developed a methed for computing the
non-parametric maximum Hkelihood estimate (NPMLE)
of the survival curve from interval censored data by
fiting a log-linear binomial model. The method gives the
same results as the methods devised by Peto [1973] and
Turnbull {1976] when the number of points where the
survival curve estimated is not too big compared 1o the
number of observations.

Sinha [1993] presented a nonparametric Bayes method
for analyzing interval censored survival data.  He used
Monte Carlo algorithms, including data supmentation
[ Tanner and Wong, 1987] and Gibbs samphing {Geman
and Geman 1984], to find posterior estimates of several
quantities of interest. One of the advantages of the fully
parametric approach is that the number of intervals can
be regarded 1o be independent of the time points of
observations so that the practical problems of
convergence in fitting an algorithm become manageable.
Becker and Melbye [1991] proposed a method in the
setiing of a fully parametric mods! for the intensity and
discussed practical aspects of estimation of the survival
curve and confidence intervals. He also proposed an
excess risk model for the intensity and implemented it in
the GLIM software. These authors proposed a class of
score statistics that may be used in estimation and
confidence procedures. Singh e? af. [1988] proposed a
parametric method for interval censcred data using a
generalized log-logistic based failure time model.

Betensky et al. [1999] proposed a smooth hazard
estimator for interval censored survival data using the
method of local likelihood. The model 15 fitted using 2
focal EM algorithun. The estimator is more descriptive
than traditional empirical esitmates in regions of
concentrated information and takes on a parametric flavor
in regions of sparse information. They derived two
different standard error estimates for the smooth curve,
one based on asymptotic theery and the other using the
bootstrap method.
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There are two broad reasons for modeling survival data.
One objective of the modeling process is to determine
which combination of potential explanatory variables
affects the form of the hazard function. In particular, the
effect that the treatment has on the hazard of death can be
studied, as can the extent to which other explanatory
variables affects the hazard function. Another reason for
maodeling the hazard function is {o obtain an estimate of
the hazard function Hself for an individual. The resulting
estimate could be particularly usefil in dewising a
reatment regime or counseling patients about their
Prognosis.

In the parametric case, the failure time distribution is
assumed known except for a few scalar parameters. The
proportional hazard model, however, 1s nonparametric in
the sense that it mvolves an unspecified function m the
form of an arbitrary baseline hazard function. In
consequence, this model is more flexible, but different
approaches are required for esiimalion and iesting.
Suppese that data are available for n individoals, amongst
whom there are r distinet death times and {#-#) right-
censored survival times. We will assume that only one
individual dies at each death time, so that there are no ties
in the data. The » ordered death times will be denoted by
i) E e <. so that f,is the /7
ordered death time. The set of individuals who are al risk
attime 7, will be denoted by Ry, ), so that B{ ¢, ) is the
set of individuals who are abive and uncensored at s tune
justprior to 7. The quantity R{ 1) is cafled the risk
set. Cox [19721 showsd that the relevant likelithood
funetion for the proportional hazard model 15 given by
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inwhich ¥ is a vector of covariates for the individual
who dies at the fth ordered death time 7 Peto [1973]
proposed a nonparametric method for estimating the
survival distribution based on interval censored data.

Suppose J; (i=1,2,....n), the survivael times for n
patients, are independent random variables with 31} as
the swrvival function, the probability that the event of
interest oecurred beyond the time pomnt {. This survival
function can be estmated for interval censored data
assuming thai the follow.up visits are fixed. Let us
sssume that the follow-up visits oecur at 2 finite number
of M-1 known times 7.7, ... Tppy. Where (7,77, ).
i=1.2. .M, represent the /% interval. Define oy lobe



the indicator variable such that g, =! if the i subject
has {ailed in thejm interval, gz =0 otherwise. Let y =

N . ~ . .
z ay This sum represents the total munber of failures n
a=1

the fh mterval. The survival time S(1) 1s discrete with the
probability mass distributed only at 77, ... Farr

Therefore, X ={ X, oo ey )T has a multinomial

distribution with M parameters, P=(p, Py ) .

where /7, is the probability that & failure ocours in the T
interval, We can write the log likelihood function as
follows:

"

L ZZ‘XJ IOg P_,i (2)
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where Z‘Di_l and zz‘l{j_N
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The statistical analysis becomes straightforward if we
could determine the precise mterval in which the failure
had oceurred. This is not usually the case in observational
studies. For follow-up clinical trials conducted at the STD
clinics or health departments, individuals may skip the
follow-up visits frequently due to various reasons and
cannot precisely determine the interval in which the
infection had occurred, but can only estimate that the
{ailure had occurred within one of several successive
intervals. If 7, denotes the left and R, denotes the right

element of an interval for the /'™ individual and [, < R,

p=1.2 N Defing the log likelihood function for this
incomplete data as given by Valappil and Singh {199%],

Mow the problem of maximizing the log-likelihood
function is equivalent to solving self-comsistency
equations [Efron, 1967]. Applying the EM algorithm
[Dempster er af, 1977} or solving the above self-
consistenoy equations would yield the same result.
Using the self-consistency algorithm, we can search for
the maximun kelihood estimates.

3. THE METHOD OF G-ESTIMATION

Nearly 750,000 cases of gonorrhea and other STDs are
reported  apnually in the United States [CDC,
DSTOPHIVP, 1995]  Another 700,000 unreported
cases, mostly among teenagers and young adulls, are
believed to oocur each vear. Anslyzing these type of data
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in estimating the effect of prevention treatments had been
a challenge to statisticians due to confounding and
intermediate factors which would modify the actual but
unknown treatment effect [Figure 1].

To consider analyses of the interval censored data, using
the method of G-estimation [Robins 1986, 1989 and
19921, consider a study of the effect of a treatment on the
survival of patients. Let 77, be the survival time of the i
subject, i=1,2..n. Let g, (2} record subject /s treatment
at time ¢ and visit k and 7,7 record various baselme,
time- dependent and time-independent covariates at time
t and visit k. Also letFyjand 7y be the recorded
treatment and covariate history up to but not including
time t. Let U represent the counterfactusl “baseline”
failure time random variable [Cox and Oalks, 1984,
Robins 1986 and 1987, Rubin 1974], representing a
subjeel’s failure time had, possibly contrary to the fact,
that the subject was not being treated,

In a randomized study, the treatment allocation is
controlled by the randomization scheme. In an
observational study, Robms [1986] considered two types
of failure times to measure the causal effect; based on the
assumption of no unmeasured confounders at each time
t, the onset of treatment ai t should be conditionally
independent of the failure times, given the covanate
history. Based on the assumption of no unmeasured
confounders

ULLE®|E(s ) L(r)T<t, (3)

where F{1}is the treatment rate at ¢, Ly is the recorded

covariate history up (o but not including t, Efr)isthe
catment history up to but not including time t and the

symbol [{ is used here to show the independence.

if (3) is true, the change in treatment rate at / is
independent of the baseline counter-faciual failure time
U, conditional on treatment history and history of all
recorded covariates prior to t. The above assumption is
the fundamental condition that allows one to draw causal
inferences from the observational data [Robins, 1992]. it
is also very important in an observational study to collect
data on a sufficient number of covariates to make the
assumption  {3) is approximately true since the
assumplion of no unmeasured confounders 15 not always
guaranteed to hold in an observational study. Under the
assumption that (3) is true, let us consider that the
ireatment E(4) received at time tis dichotornous. That i3



E(t) = 1, treated at tme t O, otherwise. Therefore,
according to the fundamental assumption of no
nunmeasured confounders, we can write (3) as follows:

ACVECE L)) =M E(F) L) @

The assumpiion (4) is the fundamental condition which if
it is true, will allow us to draw causal inferences from
observational data. In all observational studies this
condition cannot be guaranteed 1o held and is not
empirically tesiable; under those cireumsiances, 1t 1s not
appropriate to draw causal inferences. However, in a
sequentially randomized study, at each time t, the
treatment would be chosen at random; it is valid in this
case to draw causal inferences without violating any
assunpions.

To estimate the causal effect of a treatment, it is
mmperative that we test the hypothesis of no treatment
effect. Therefore, we define the null hypothesis of no
treatment effect on survival time as,

U=T )

If this causal nuil hypothesis is true, it umplies that the
subject’s observed and baseline failure times are equal
irrespective of the treatment effect. In conjunction with
our earlier assumption of “ne unmeasured confounders™
(3), the causal null hypothesis implies that, conditional
on past treatment history and other covariate history, the
hazards of treatment at time ¢ do not depend on
observable failure ttme T. Therefore, we can define the
extended model that adds a term

AUE(EIL(r )T =MOE(FLI(r)) ©

If the above 1s an mstantaneous rate process, we can test
it by specifying a time-dependent Cox proportional
hazards model:

Aft| E(I):Z(E);T) - Agmeﬁ'w,;k(mzmLu(:) %

where 15(7) is an unspecified baseline hazard function.
)

Wik (t) given by j‘Ei’k(u) du  is the cumulative
&

exposure to the treatinent prior (0 1, [; s are real value

functions of the baseline covariates and § and & are
unknown parameters, If odds model is correctly specified,
an asymptotic ¢ - level Cox partial likelthood score,
Wald or likelihood ratio test of the hypothesis g =¢ in the
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grio gw, ) in(7)1s referred to as 2 G-test by Robins

[1992] The G-test s a generalization to time-dependent
treatments and confounders of the effect of a single time-
independent treatment.

In the case of interval censored data, to study the random
variable S, which is the true time fo response, and its
relationship to covariates X, the likelihood function is
given by Valappil and Singh [1999] and 15 defined as,

B - s R S & Lol
G = HFF{KX,‘ﬁXj:Oi‘CVJﬂ“i}) @)
et

The survival times are ordered in ascending order of
magnitude and we define an indicator function ¢gr;; such
that, o, =1 if §,& 4,01 O otherwise. As discussed in
Tumbuil {1976], the MLE will be unique only up to an
squivalence class and the likelithood function can be
written as follows:

”

=112 a,Prix.=x.8=si ©

=1 j=i

As discussed earlier, the failure ume of the it subject 15
denoted by 77, if we assume a continuous distribution
Fgwhere @ is our parameter of interest. Suppose we
only know that7’; has occurred in an interval
(I, R jbut have no information on the exact time of

occurrence. If we assume that each subject is visited or
screened randomly as a stochastic process h(t), then the
pairs (7., ®;), where 7, is known to ocour, are gach
realizations of the process h(t). Thelog-likelihood is a
function of @ where the visiling process h(t) is
independent of 77, for the N subjects can be writfen as:

9“2308[F(Ri)~ﬁ'(11f)]+hp(f) 0

where f1,(7) involves the parameters of describing the

process h{1). The visiting process does not have any
effect on the duration of 7', Since 77, is interval
censored, the complete information sbout F can only be
inferred from the mterval. The only way we can reduce
the loss of information is by controlling the width of the
interval, In health related data these situations are very
difficult to achieve. This can be tllustrated by an example.
Let us consider the case when k() is a homogeneous
Poisson process with intensity function A¢f)= 1.
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Figure 1. Confounding and Intermediate Variables:
The cffect of freatment on STD.

Let us assume that the time intervals between successive
visits are independent and identically distribated as an
exponential distribution; with that assumption, the
probability density function of (1, g, }is given by

Prip,=LR=10)=[Ae” Ingrep™

A2 [gac JOFG) - FY1) (1)

Now let us consider the case of fixed follow-up visits
because fixed follow-up visit data are mere popular in
public health research.  In a cohort study of a specific
outcome, it wiil be difficult to keep track of the outcome
on a continuous basis. In most of the studies the subjects
were followed up weekly, biweekly, or monthly and it
makes easier if the intervals between visits are constant
aver fime and the variability associated with the follow-
up time can be controiled. Let the interval between each
visit be incremented by . Therefore, under a fixed
[ollow-up scheme R; becomesf,+4. If we assume
7', follows an exponential distribution with mean 1 then
&
the log likelihood functicn can now be written as:

Y
Lg(g) = zggg[e('f’h)_e(mf?fi’,rhiff'j (a2
=i

The MLE of & is given by Valappil and Singh [19991.
Usually, follow-up studies cover a fixed period of time
and is decided at the beginning of the study. The survival
time of an individual is sald to be censored if the end
point of interest has not been observed during the study
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time due to lost to follow-up or other reasons. Consider
the situation where there are N subjects and k follow-up
visits. As we assumed earlier, each visit is incremented
by. Thus, if' the event does not occur for the ith subject t
after k visits, the §  observation will be right censored at
k&, With the introduction of right censoring, the MLE
of & is given by Valappil and Singh [1999).

There are several other approaches ncluding multiple
mnputation [Rubin, [987] or mudpoint imputation method
{0 estinate the survival tiroe ustag fnterval censored data.
In the case of mid-point impuiation, if we could assums
that cach follow-up inmterval s incremented by
&.( L;. ;) will be replaced by j,+&/2 and we can
casily get the MLE associated with the log-likelihood
function and it is given by Valappil and Singh [1999].
There are several issues regarding the use of mud-pomt
and other imputation methods and 1ts impact on causal
inference,

4. DISCUSSION

In standard time-to-event or survival analysis, occurrence
times of the event of interest are observed exactly or are
right- censored, meaning thal it is oaly known that the
event ocowrred after the {ast observation time. There are
numerous methods available for estimating and testing
the censored survival data. [n some situations, however,
the times of the events of interest may only be kaown to
have occurred within an interval of time. Interval
censoring arises natwrally whenever individual subjects or
experimental units are observed only occasionaily during
follow up times decided in to the study design stape.
Other examples of interval censored data would be the
case of human immunodeficiency virus (HIV). fmportant
events such as infection, seroconversion (first appearance
of detectable anubodies) are ascertainable only by
laboratory analysis. Therefore the specific times of
Infection are not known. Several approaches are currently
available for fitting the proportional hazard model to
tnierval-censored or grouped data,

The interval-censored data can be reformulated as
missing failure time data. When faced with missing
valuss, imputation is & generic term for filiing in missing
data with plausible values. In s multivariate dataset, each
missing value may be replaced by the observed mean for
that variable or may be substituted by some sort of
predicted value from a regression model. Expectation-
Maximization (EM) algorithm is a general technique for
finding maximum likelihood estimates for parametric



models when the data are not fully observed. There are
many statistical problems which may not appear to
involve missing data, but which can be reformulated as
missing data problems. Interval-censored data fit mto this
category.

Multiple imputation [Rubin, 1987] is another technique
it which each missing value is replaced by m>!
simulated values. The m sets of imputations reflect
uncertainty about the true value of the missing data, The
task of generating multiple imputations has been
problematic until recent years. No straightforward,
general purpose algorithm has been available for
generating proper multiple imputations in a multi variate
setting, but currently using the Tastest computers, this is
passible using the technique of iterative simulation. The
methed of self-consistency algorithm proposed by
Turnbull is another approach fo estimate the survival ime
using interval censored failure ttme data. Turnbuil [1976]
has proved that maximizing the log likelihood function is
equivalent to using the self-consistency equations.

in conclusion, the conventional analytic methods may be
inappropriate for the analysis of complex causai relations
in follow-up studies especially when the data is interval-
censored. (-estimation provides an  important
enhancement to the validity of such analyses. This
rescarch developed an approach for the analysis of
interval-censored survival times, which employs the self-
consistency algorithm in using the G-estimation
procedare.
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